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Abstract—Absorbing and connecting boundary conditions are
implemented for the transmission-line matrix (TLM) method.
The approach is based on an equivalence previously established
between the finite-difference—time-domain (FD-TD) method and
the TLM method. Boundary conditions presently used for the
FD-TD algorithm can be transformed into conditions that can
be interfaced with two-and three-dimensional (2D and 3D) TLM
schemes. Additional conditions are introduced for 3D-TLM sym-
metrical condensed node simulations to suppress instabilities
caused by spurious modes, inherent to the model, and which are
amplified by absorbing boundaries. Numerical results and the
comparison with other methods show the good performance of
the proposed algorithms.

I. INTRODUCTION

ince its introduction by Johns [1], the transmission-line

matrix (TLM) method has been used extensively to solve
electromagnetic problems that pertain to a wide variety of
applications [2], [3]. The major advantages of this method
are the simplicity and flexibility of its basic algorithm, from
which vectorial Maxwell’s equations are transformed into a
simple numerical model of wave propagation.

Like finite-difference —time-domain (FD—TD) and finite ele-
ment methods, recent publications have shown that TLM can
be used for open problems for which various techniques have
been used to limit the computational domain. For instance,
Eswarappa ef al. [4] used Johns’ matrix techniques to simulate
matched loads in rectangular waveguides for the dominant
modes. Regarding scattering problems, Simons and Bridges
[5], [6] derived 2D-TLM absorbing boundaries, and Saguet
[7] proposed matched load simulation based on Taylor’s
series expansion technique for 2D-TLM waveguide problem
simulations. More recently, Morente ef al. [8] investigated
TLM absorbing boundaries based on a one-way equation
technique for three-dimensional problems. If relatively little
work has been reported on absorbing boundaries for TLM,
many approaches to implement absorbing boundaries for the
FD-TD method have been reported in the literature. Among
algorithms that have shown good performance are Liao et al.’s
[9], Higdon’s [10], and Lindman’s [11] absorbing boundary
conditions. These FD-TD conditions have been studied by
Blaschak and Kriegsmann [12], Fang [13], Moore et al. [14],
and Railton and Daniel [15].
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In addition to proper absorbing boundaries, it iS necessary
for scattering problems to introduce connecting boundaries
[16], [17]. These are artificial boundaries that separate regions
within which scattered fields only prevail from the ones
where the total field (incident and scattered fields) exists.
Their purpose is to avoid incident plane waves to impinge on
absorbing walls for which they exhibit poor performance. A
two-dimensional algorithm was proposed for TLM simulations
[6] and is based on the equivalence principle.

Since each TLM scheme is equivalent to a FD-TD formula-
tion as presented in [18], absorbing and connecting conditions
developed for the FD—TD method can be transimplemented
into TLM simulations. In this paper, Higdon’s absorbing con-
ditions, Taylor’s expansion algorithm, and connecting bound-
ary conditions for the FD-TD method are modified and
implemented into the 2D-TLM and extended to 3D-TLM
simulations.

II. ABSORBING BOUNDARY CONDITIONS

An absorbing boundary scheme that uses a dissipation
region that gradually damps waves striking the boundary was
reported {4]. However, to obtain substantial absorption over
a wide range of wave incident angles and frequencies, dissi-
pation must occur within a region that extends over several
wavelengths of the lowest frequency component. Two other
techniques to generate absorbing boundaries for 2D problems
were presented. The first method used a technique to adjust
the local reflection coefficient at every point on absorbing
walls and simulation time step. Evaluation of that coefficient
was based on the wave local incident angle, predicted by a
special field extrapolation routine [S]. Some difficulties asso-
ciated with deriving a good algorithm for predicting accurate
incident angles for general cases were reported. The second
technique directly applied Higdon’s absorbing conditions for
the FD-TD method to the 2D-TLM simulations [6]. However,
this approach does not give satisfactory results with the 3D-
TLM symmeirical condensed node, due to rapid generation
of unstable solutions. Very recently, an approach based on a
one-way equation and a technique based on a discrete form
of the wave equation were proposed [8]. If satisfactory results
were obtained for 2D problems, instabilities were reported for
3D cases.

A. Taylor’s Expansions

Consider a spatial domain Q@ = (z,9,2),s < 0, with an
absorbing boundary placed at £ = 0. Then, by assuming
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that the wave propagates along the positive X direction, one
can have x — ct = const, or Az/At = ¢ (Azx and At are
the space and time increments, respectively), for the wave
function U = U(z,y,2,t). Then, U = U(z,y,2,t) can be
approximated by a Taylor’s series (Taylor’s expansion) along
the plane of £ — ct = const. As a result, one has

U(0,y,2,t) s U(0 — Az,y,z,t — At)
P

1 &8U(0— Az,y,z,t — At)
+;z—' oz’
-(Az)’, )

where integer P is the order of expansion.

By replacing U(z,y, 2,t) with ,U(iz,iy,.) [= Uiy Az,
iy Ay, i, Az, n At)] and the differential with backward dif-
ference, one can easily have the updated value of the wave
function at the boundary:

2U(0,4y,0,) =, 1U(O —1,4y,3,)

1 Vi_ U0 =1,4y,is
+Z 1 v 12)

(Az)*

(Az). @

The backward differences are computable since they are
evaluated inside the spatial domain . Thus, the preceding
condition is suitable for an absorbing boundary and can be
rewritten as

P
WU(0dy,82) 2D i niU(0 = iiy, i) (3)
=1
or

P
(Z ai,iD;iK-i)nU(o,z‘y,z‘z) =0, ago=-1,l (4

=0

where a;;,¢ = 0,---, P, is the expansion coefficient that can
be obtained by expanding (2) (see Table I), ,U(0, ¢y, ¢.) is the
updated value of the wave function at the absorbing boundary,

and D;% and K¢ are the space and time-shifting operators
defined as follows:
D7 Ui, iy, is) = Ulic — 8,4y, 45) ®)
K7 Ulia, by, i2) = pn_U(Ga, iy, 05) . ©)

The quality of the preceding absorbing boundary can be
evaluated by examining the reflection coefficients of the bound-
ary [14]. Fig. 1 shows the reflection coefficients of Taylor’s
expansions at Az /A = Al/A = 0.025 for a medium of
U = 1 and e, = 2.

B. Higdon’s Absorbing Boundary Conditions

Again, consider a spatial domain } = (z,y, ),z < 0, with
an absorbing boundary placed at z = 0. Higdon [10] proposed
the following form of absorbing conditions:

P
H(%+cos§9) 0

=1

)U(x Y,2,t) =0, ()

where 6,4 = 1,---, P, is the incident angle at which the
wave is supposed to be exactly absorbed. The preceding
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TABLE I
COEFFICIENTS FOR DIFFERENT ORDER OF TAYLOR’S EXPANSION
Order of the .
Absorbing Boundary P Coefficients
1 a, = 1.0000
2 an= 2.0000
axn =-1.0000
an= 2.5000
3 ay =-2.0000
ap = 05000
an= 2.6667
:37) =-2.5000
4 a3 = 1.0000
a4, =-0.1667
a; =2.7083
5 a9 =-2.6667
ay = 1.2500
a44 =-0.3333
ass = 0.0417
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Fig. 1. Reflection coefficients of Taylor’s Expansion and Higdon’s

conditions.

condition has been claimed to provide a general and optimal
representation among those absorbing boundary conditions
based on a systematic rational approximation to the portion of
the dispersion relation. The 6, can be chosen the same as those
obtained in [19] with the different optimization criteria for
wide-angle absorption. However, the choice of 6;, in general,
depends on the configuration of the problem to have the best
absorption. For example, #; may be chosen to take advantage
of a priori information about the directions to which particular
waves approach the boundary.

Now, taking difference approximations for both 8/ 8x and
0/ dt, (7) becomes

1+ K!

f () eyt (120

1+ D;?
2

2U(0,4y,4,) = 0. 8
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Fig. 2. 2D-TLM network with absorbing boundary.

After some mathematical manipulations, (8) can be ex-
pressed as

O 7’y77'z Z Z 31,2 n— zZU(O_Zl Zya7fz)
11=01i2=0
@0,0 = 0 (9)
or
P P
Z Z (31,02 D;ZIK—ﬂnU(OaZ‘y?iz)a a,0 = -1 3
11=0:2=0
(10)

where a;; ;2 depends only on the types of absorbing bound-
ary conditions used, and can be obtained by expanding (8).
2U(0,1y,1,) is the updated value of the wave function at the
absorbing boundary.

The reflection coefficients of Higdon’s absorbing conditions
can be evaluated similarly to that for Taylor’s expansion.
Comparisons for different orders of absorbing conditions are
shown in Fig. 1. In fact, both Higdon’s conditions and Taylor’s
expansion can be generally expressed mathematically by (10).
That is, the wave at the boundary is predicted by a linear
function of waves inside and on the boundary at the previous
time steps. Whereas the different sets of constants a1 ;2 as
a consequence of different ways of approximation, have led
to different types of absorbing conditions, they are essentially
related to extrapolation techniques. Higdon’s conditions and
Taylor’s expansion can be considered as a wave expansion (or
extrapolation) along plane x — ¢t = const . Other approaches
used the multidimensional expansion, in which tangential field
components are also employed tc evaluate the unknown, for
instance, Lindman’s conditions [11].

III. IMPLEMENTATION OF ABSORBING BOUNDARY
CONDITIONS IN TLM SIMULATIONS

Consider a spatial domain Q@ = (z,y,2),z < (1/2) Az
(Fig. 2), in which a TLM mesh is positioned and an absorbing
boundary is placed at x = (1/2) Az . The objective is to
find the impulse reflected by the boundary while maintaining
minimum, global reflections.
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As shown in [18], the impulse in the TLM mesh is actually
equivalent to the linear combination of electric and magnetic
field components. For example, in Fig. 2,

1
+1V3 <0+ ,zy,zz) Jr1V(0+ 2,zy,zz)

1.
+Zon+%Iw(O+§,zy,zz)

r .
0+-§,zy,1z

1
— ZO n+é~Hz (0 + E,iyﬂ:z) .
(11)

Since both E, and H, satisfy the wave equation, the
absorbing boundary conditions can be applied to either
of them or to the linear combination of them [e.g.,
nt(1/2)V (0 +1/2,4y,4;) in this case] such that waves
propagate through the boundary with minimum reflections.
In consequence, the absorbing boundary conditions presented
can be generally and directly applied to impulses traveling
in the TLM network. More specifically, in the formulations of
the absorbing condition with Taylor’s expansion and Higdon’s
conditions shown earlier, wave function U can be considered
as impulses V' on the link lines of the TLM nodes, including
those located at the absorbing boundary. This results in the
formulations of absorbing boundary conditions for the TLM
simulations.

En-}—LE

A. Absorbing Boundaries for 2D-TLM Node

Consider the 2D-TLM shunt node model as shown
in Fig. 2, in which an absorbing boundary is placed at
z = 0+4(1/2) Az (halfway between nodes). The impulse
nt(1/2)V3 (0+1/2,4,) ;reflected by the absorbing boundary
and to be injected back to the TLM network, can be found
easily according to (10) as

n+1V3(0+ ) Zzauzz

11=01i2=0
1 .
“npdoia¥3 (0 t5 - Zlﬂz) =0,
(1070 =0 (12)
or
F 1
S 5w Dk, (04 1) 0
/ 2
11=012=0
aoo0 = —1, (13)

where a,1 ;2 pertain to different types of absorbing boundaries
used.

For the 2D-TLM series node, a similar condition can be
developed.

B. Absorbing Boundaries for 3D-TLM Expanded Node and
Asymmetrical Condensed Node

Since the 3D expanded node model and the 3D asymmetri-
cal condensed model are constructed from the 2D-TLM shunt
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Fig. 3. 3D-TLM symmetrical condensed node with absorbing boundary.

and series node models, the corresponding absorbing boundary
conditions can be established in a way similar to that described
for the 2D-TLM simulation. More specifically, the impulse
reflected by the boundaries and to be injected back into the
TLM network can also be found by (13). The only difference
resides in the assignment of the superscripts and subscripts
for V since their numbers depend on which link lines are
connected to the boundaries.

C. Absorbing Boundaries for 3D-TLM Symmetrical
Condensed Node

For the 3D-TLM symmetrical condensed node (SCN), the
absorbing boundaries are still valid except that K ~*1 must be
replaced by K ~%?. This modification is due to the slow-wave
property of the 3D-TLM SCN model: The scattered impulse on
the link line of a node, resulting from an incident impulse with
the same polarization on the link line at the other side of the
node, only appears after two time steps 2A¢. Consequently, the
modified condition can be expressed as (referring to Fig. 3)

P P 1
Z Z @i1,i2 D;’1K“212n+-;.vlrom11 (0 + 57iz) =0,
i1=0i2—0
(14)

However, despite the preceding modifications, simulations
have shown that the uncontrollable instability may occur when
the absorbing conditions are implemented directly into the 3D
SCN model. The main reason is that spurious modes can
propagate in the 3D-TLM SCN model and, although they
may have relatively small magnitude, can be amplified by the
absorbing boundary conditions.

1) Spurious Modes and Their Effects at Absorbing Bound-
aries: Nielsen [20] has shown that, due to periodic spatial
sampling and symmetry, spurious modes exist in the 3D-TLM
symmetrical condensed node model. their existence can be
explained by the fact that the TLM model cannot correctly
simulate high spatial-frequency components due to the finite
discretization in space. Therefore, the spurious modes will
be produced to substitute the high spatial-frequency physical
components wherever required.

The existence of the spurious modes can be described
quantitively as follows: suppose a physical mode, which is

ap,0 = —-1.
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Fig. 4. Reflection coefficients of absorbing boundaries for spurious modes.

expressed by (15), propagating in the 3D-TLM SCN network

(15)

with propagation constants k,, ky, and k. and temporal fre-
quency w.

Then, the forward-propagating spurious mode, expressed by
(16), and backward-propagating spurious mode, expressed by
(17), can propagate, both with the same temporal frequency
w and propagation constants k, = e+ ks, k, = ALy + ky,

U(ix,iy, iy) = eI (@n At —koin Ao +hyiy Ay+haiz A )
n

and k. = =+ k..
nU(Zxa iy7 Zz) = ej(wn At _Emim Am+Eyi@/ Ay-H::JZ Az) (16)
nU(Zma ty, 'lz) = ej(wn Aty Aw +kyiy Ay +k,i, AZ) a7

These spurious waves are represented by spheres centered
at (m,m,7) in a three-dimensional dispersion diagram (see
[20]), and their propagation constants k., k,,, and k, have large
values because Az, Ay, and Az are small. Thus, spurious
modes are nonphysical entities with high spatial-frequency
components. They are generated by spurious excitations, ge-
ometries with discontinuities, and can even propagate with
low temporal frequency content. When absorbing boundary
conditions are applied, spurious modes can be amplified at the
boundary. The reflection coefficients for the spurious modes

,have been computed and are shown in Fig. 4. As can be

seen, the reflection coefficients arc larger than one, leading
to instability.

2) The Modified Absorbing Boundary Conditions for 3D-
TLM Symmetrical Condensed Node: To reduce the effects of
spurious modes at absorbing boundaries, additional conditions
may be introduced. Suppose that there exist a physical mode,
expressed by (15), and its spurious mode, expressed by (16).
The phase shift between two neighboring nodes along = =
const for the physical mode is k, Az, whereas for the
spurious mode it is k, Az = 7 + k, Az, which corresponds
to a change of polarity in addition to the phase shift of the
physical mode. Therefore, if an absorbing boundary condition
exists for the physical modes as indicated by (14),

P P , 1
5 5% s D U (04 i) =0

11=0$2=0
ap,0 = —1, (18)
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then, the condition

P P

Z Z (_1)i1ai1,i2 D;ilK—Ziz

11=012=0
T 1 ..
'n+%V100r11 0+ Eazyﬂz =0,

ao,o = -1 s (19)
should absorb the forward-propagating spurious mode.

By combining the preceding two conditions, one can easily
obtain the condition that can absorb both the physical and
spurious modes:

P P
(Z Z ait D;ilK—2i2>

11=01:2=0
P P
i1 . Y
. § : § :(_l)l @i1,i2 szlK 232
11=01:2=0

1
.n+_é_V1T00r11<0—|——é—7zy,zz) =0. (20)

Fig. 5 shows the reflection coefficients using the preceding
absorbing condition for physical and spurious modes under
the assumption that k, = kcos®, where ¢ is the incident
angle to the absorbing boundaries. Compared with Fig. 1, good
absorption still can be observed for the modified algorithm.

IV. CONNECTING BOUNDARY CONDITIONS
FOR TLM SIMULATIONS

Absorbing boundary conditions have been found to perform
poorly with plane waves [11], which may be explained by the
fact that they do not satisfy radiation conditions. Consequently,
it is essential to separate scattered fields from the total field
in regions adjacent to absorbing boundaries. This is achieved
by introducing connecting boundaries as illustrated by Fig. 6.
Note that although there are other ways to deal with scatter-
ing problems [13], the technique presented here may avoid
numerical noise in certain situations [16], [17]. In addition to
some pioneering work presented by Simons and Bridges [6]
for two-dimensional scattering problems, a more concise and
general formulation for connecting conditions is proposed here
and extended to the 3D case. The approach is based on the
equivalence between the TLM method and the new FD-TD
formulation described in [18].
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Fig. 6. Obstacle illuminated by electromagnetic wave: (a) original problem;
(b) equivalent problem; and (c) equivalent problem with absorbing boundaries.

Consider the electromagnetic scattering by an object in
Fig. 6(a). For linear media, the total field can be decomposed
into incident and scattered fields. That is,

Etot — Einc + Esc® (21)

Htot — Hinc + Hsea (22)
where the incident fields E® and H™® are defined as fields
that exist in the absence of the scatterers.

According to the equivalence principle [22], solving the
problem in Fig. 6(a) can be substituted to solving the problem
of Fig. 6(b) or 6(c) under the condition that a magnetic current
source

M, = E® xn (23)
and an electric current source
Jo=nxH™ (24)

exist on the connecting surface, where n is the normal unit
vector of the connecting surface pointing inward.
Now, suppose that a connecting boundary is placed between
two regions filled with a TLM network, as shown in Fig. 7.
Writing

M, = Myay + M. a, (25)
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J. = J,a, + J,a, (26)

and introducing the equivalence between FD—TD and TLM
described in [18], one obtains
—My =E.; — E.» = (‘"Vip + 'Vjo) — CV& +2V§) @7)
—J: = Hy1 — Hys E(IV{O - 1Vlio)/ZO
- (V% -°V6) /%, (29)
and
M, = By = By = ('Viy + V1) = (V5 +2V3) (29)
Jy=Hu ~ Hyp = (Vi = 'V) /Zo

_(2V3r _ 2V3")/Zo, (30)
which lead to the connecting boundary conditions:
Wi = ——;—(My + Z0J.) + Vg (31)
2V6r = ‘;—(My - ZOJz) + 1Vlio (32)
W = 5 (M. — Z0d,) + 7V (33)
vy = —%(Mz + ZoJy) + Vi (34)

where 'V, TVig, VL TV 2VE, 2V, 2V, and 2V are the
impulses incident and reflected at the interface between
regions 1 and 2, as shown in Fig. 7. The current source
components are computed by (23) and (24). The preceding
equations hold for arbitrary excitations (which are usually
expressed analytically). To reduce the numerical noise
generated by the TLM model in the presence of absorbing
boundaries, it is necessary to use low-frequency excitations
for the incident fields because they are usually analytically
computed and then introduced at connecting boundaries
as equivalent currents. Consequently, they always travel at
a constant velocity (velocity of light) regardless of their
frequency. However, scattered fields, which are evaluated
numerically, travel at lower velocity at higher frequencies
due to the numerical dispersion of the TLM model. As a
result, incident and scattered fields do not generally reach
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a given location in synchronism, and, consequently, errors
are generated. For instance, scattered fields are supposed to
reach a shadow region at the same time as incident waves
to yield an almost zero field region. However, this may not
happen in numerical simulations due to the delay undergone
by scattered-wave high-frequency components.

V. VALIDATIONS OF ABSORBING AND CONNECTING
BOUNDARY CONDITIONS FOR
TLM SIMULATIONS

An appropriate way to validate numerical time-domain
techniques is to discuss results in the frequency domain rather
than in the time domain. The reason is that numerical models
exhibit some severe dispersion (in both space and velocity)
in the high-frequency range due to their finite discretization
scheme. Consequently, incorrect results may be generated
preponderently for high-frequency components, which may
not be evaluated easily for comparison in the time domain.
Conversely, all the models tend to be correct for low-frequency
modeling. This also applies to validations of models including
different schemes interfaced. Thus, validations of absorbing
boundary conditions for the TLM model are performed in the
frequency domain, and for relatively low frequencies, rather
than in the time domain.

A. Computations of Reflections of Absorbing Boundaries in
Rectangular Waveguides

Consider a section of the WR28 rectangular waveguide in
which the waves can be considered as a superposition of many
plane waves bouncing back and forth on the walls at different
incident angles. Therefore, behavior of the wide-angle absorp-
tion of the absorbing boundaries can be evaluated. Simulations
were performed using a 2D-TLM shunt node network and 3D-
TLM SCN network, respectively. Both ends of the waveguide
were terminated with the absorbing boundaries. The Voltage
Standing-Wave Ratio (VSWR) in the waveguide is computed
directly and numerically with the ratio of V., over Vi,
where V is the amplitude of the dominant mode in the
waveguide. Fig. 8 shows the return losses in the simulations
which are more than —35 dB over a wide range of frequencies
has been achieved for both 2D and 3D cases. It can also
be observed that Taylor’s series expansion technique displays
slightly better performance than Higdon’s approach in the
high-frequency range, whereas the trend is reversed at lower
frequencies. Knowing that near cutoff the dominant mode
strikes the absorbing walls at grazing angles, one can conclude
that Higdon’s approach yields a better performance under this
situation. This conclusion is corroborated by results shown in
Figs. 1 and 5.

B. Validations of Absorbing and Connecting Boundary
Conditions with Scattering Problems

1) Two Dimensions: Fig. 9 illustrates a 0.1-wavelength-thick
conducting screen that extends 0.5 wavelength to each side of
a straight slot having a gap of 0.025 wavelength. Broadside
Transverse (TE) illumination is assumed. Two types of pre-
dictive data are compared: 1) the high-resolution (0.025)¢)
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Fig. 8. Return loss in rectangular waveguide with TLM simulations.

TLM model treating the slot as a one-cell gap (absorbing
boundaries are placed uniformly 15 cells away from the con-
ducting sheet); 2) a very high resolution frequency-domain
EFIE model, solved via Moment Method (MOM) (having
0.0025)g sampling in the slot), which treats the slotted screen
as a pure scattering geometry [21]. From Fig. 9 one can see
that there is good agreement between the two sets of results
in both magnitude and phase.

2) Three Dimensions: Consider a metal cube (Fig. 10)
with electrical size kgs = 2, where s is the side width
of the cube, subject to plane-wave illumination at broadside
incidence. Results shown in Fig. 10 are for the TLM (SCN)
simulation and a frequency-domain surface EFIE using a
standard triangular surface-patching MOM code [17]. For the
TLM model, each face of the cube is spanned by 144 square
cells (12 x 12), and the absorbing boundary is again located at
a uniform distance of 15 cells from the cube surface. For the
MOM model, each face of the cube is spanned by 32 triangular
patches. Comparative results are shown for the surface current
along path abcd, which is the plane of the incident electric
field (see Fig. 10). The surface currents were obtained from
the expression n x H on the metal surface, where H is
obtained from the currents in the TLM network [18] and
n is the outward normal unit vector. A very high degree
of correspondence exists between the two sets of results,
which again shows the good performance of the absorbing
and connecting boundary conditions presented herein.

The simulation results do not show the case for which
simple matched load termination was used for limiting the
TLM network. In fact, this simple technique yields acceptable
results only when such terminations are located in regions
where a simple radiation condition prevails. This is obviously
not the case in the preceding examples for which the advantage
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Fig. 9. Comparison of TLM and frequency-domain surface EFIE results for
gap electric field distribution in slotted screen.

of more complicated absorbing boundary conditions is demon-
strated in the relatively near field. Comparisons that show the
better performance of higher order absorbing conditions versus
the simple matching approach can be seen in [6] and [8], for
the 2D and 3D cases respectively.

In terms of computer expenditures, the addition of algo-
rithms that process fields at absorbing and connecting bound-
aries requires about the same CPU time as for FD-TD.
However, it was shown [18] that if TLM requires a slightly
larger computer cost than FD-TD (Yee’s scheme) in terms
of the basic algorithm, this is largely compensated by a
faster convergence for the TLM model. Finally, comparison
in terms of computer cost with MOM is difficult because it
is a frequency-domain approach. It is clear that for single-
frequency characterization, it has a great advantage over time-
domain methods. Conversely, wide frequency band analyses
via fast Fourier transform time-domain techniques are far more
efficient and have no analytical preprocessing.

3) Instabilities of Absorbing Boundaries: Numerical experi-
ence has shown that unstable solutions may still occur due to
the following reasons.

a) Absorbing boundaries too close to the source: Since
most of absorbing conditions are derived under the assumption
that waves are traveling or propagating, they may amplify,
instead of “absorbing” evanescent waves that are usually
present in regions near sources and discontinuities. It is sug-
gested that the absorbing boundaries be placed at 10—15 cells
from sources and discontinuities in both 2D- and 3D-TLM
simulations.
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b) Numerical noises: Truncation errors that occur in com-
puter simulations produce uncorrelated noise, which becomes
the predominant signal component in computation domains
after the major part of the electromagnetic energy response
has passed through the absorbing boundaries. Since most of
the absorbing boundary conditions are derived on the basis of
physical correlated wave propagation, instabilities may occur
when numerical noise becomes the predominant component
of the signal processed at the boundaries as described in [23].
To overcome or delay the occurrence of instabilities, two
techniques were employed herein: 1) use a frequency-band-
limited excitation, which reduces the high temporal frequency
components in the simulations; 2) switch to other bound-
ary conditions such as lossy boundary conditions after the
major part of the energy response has passed the absorbing
boundaries.

¢) Orders of absorbing boundaries too high: Since TLM
models are second (or slightly higher)-order finite-difference
operations higher orders which are required for higher order
absorbing boundaries cannot be computed correctly by TLM
models, leading to unstable solutions. From experience, it is
recommended that up to the fifth order of absorbing boundaries
be applied for the 2D-TLM simulations, and the third order
for the 3D-TLM simulations.

VI. CONCLUSION

In this paper, the absorbing boundary and connecting bound-
ary conditions have been studied and developed for two
and three-dimensional transmission-line matrix (TLM) simu-
lations. The performance of two absorbing boundary condi-
tions based on Higdon’s and Taylor’s expansion algorithms
were examined and validations of both absorbing and con-
necting boundaries were obtained in the two- and three-
dimensional cases. For instance, an excellent level of return

loss was achieved over a wide frequency range for matched
load simulations pertaining to the dominant mode of a rectan-
gular waveguide. In addition, good agreement between TLM
simulation results and MOM solutions was found in the case
of three-dimensional scattering problems.

It was observed that the second- and third-order absorb-
ing boundary conditions are sufficient to achieve negligible
levels of reflection and that higher orders do not improve
the accuracy of solutions.
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